Magnetic resonance imaging mesencephalic tectum dimensions according to age and gender.

نویسندگان

  • Vedat Sabanciogullari
  • Ismail Salk
  • Hatice Balaban
  • Ibrahim Oztoprak
  • Seref Kelkit
  • Mehmet Cimen
چکیده

OBJECTIVE To analyze and classify normal MRI tectum length and colliculus dimensions according to age and gender. METHODS Tectum length and colliculus diameters were measured on the T1 midsagittal and axial cranial MR images in the radiology archive of 532 (344 women, 188 men) patients aged 37.36+/-21.49 (range: 4-91) years old on average, and with no disorders affecting the mesencephalic tectum. All 532 patients underwent clinical MR imaging of the cranium at the MRI Unit of Sivas Numune Hospital and Sivas Cumhuriyet University Hospital, Sivas, Turkey between February and December 2011. RESULTS Although there was a positive linear correlation between tectum length and age, there was a negative correlation between the anteroposterior diameter of the colliculus superior and colliculus inferior and age (p<0.01). While tectum length (M3) increases with age, the anteroposterior diameter of the colliculus superior and inferior (M1 and M2) decreased (p<0.01). The colliculi were larger, and the tectum was longer in men. Although there was no difference in size between right and left superior colliculi, the left colliculus inferior was larger than the right one. CONCLUSION In addition to the fact that normal mesencephalic tectum dimensions provide information on the brain development of individuals, they may also be beneficial for the detection and treatment of related pathologies.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sexual Dimorphism and Age-Related Variations of Corpus Callosum Using Magnetic Resonance Imaging

Introduction: Despite technological advances and numerous published investigations, sexual dimorphism of Corpus Callosum (CC) remains a matter of ongoing controversy. In the present study on neurologically healthy Iranian adults, we investigated the possible gender- and age-related variations in anthropometric callosal measurements.&nbsp; Methods: Our sample comprised 35 male and 35 female sub...

متن کامل

Neonatal Brain Magnetic Resonance Imaging Findings and Its Relationship with Demographic Characteristics of Neonates

Background and Objective: Neonatal neurological diseases are characterized by a range of clinical symptoms and signs that can be confirmed by Magnetic Resonance Imaging (MRI) in some cases. This study aimed to examine the neonatal cerebral MRI descriptively. Materials and Methods: In this comparative cross-sectional study, 69 MRI neonatal images were analyzed from January to April 2019. These ...

متن کامل

Brain Structural Changes Caused by Autism Spectrum Disorder Based on Volumetric Analysis of Magnetic Resonance Images: A Review Study

Background and purpose: Autism spectrum disorder (ASD) is a psychiatric disorder which occurs in early years of life and causes various individual and social problems. Early detection of autism would help in taking necessary precautions and preventing its adverse side effects. Methods & Materials: In this paper, we reviewed the articles that have investigated brain structural changes caused by...

متن کامل

Static Coil Design Considerations for the Magnetic Resonance Imaging

One of the main challenges in developing magnetic resonance imaging (MRI) systems is to create a static coil that needs to generate magnetic field density along with the characteristics of optimal homogeneity and magnitude size. To do this, two N42 Block PMs are used and the iron core is designed and optimized in accordance with the dimensions of PM pieces using ANSYS Maxwell software. Then, al...

متن کامل

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neurosciences

دوره 18 1  شماره 

صفحات  -

تاریخ انتشار 2013